OKLAHOMASTATEUNIVERSITY
 SCHOOL OF ELECTRICALAND COMPUTERENGINEERING SCHOOLOFMECHANICALANDAEROSPACEENGINEERING

ECEN 4413/MAE 4053
Automatic Control Systems Spring 2008

Midterm Exam \#2

For all students, choose any four out of five problems.
Please specify which four listed below to be graded

1) \qquad ; 2) \qquad ; 3) \qquad ; 4) \qquad ;

Name: \qquad

E-Mail Address: \qquad

Problem 1:

The equations that describe the dynamics of a motor control system are

$$
e_{a}(t)=R_{a} i_{a}(t)+L_{a} \frac{d i_{a}(t)}{d t}+K_{b} \frac{d \theta_{m}(t)}{d t}
$$

$$
T_{m}(t)=K_{i} i_{a}(t)
$$

$$
T_{m}(t)=J \frac{d^{2} \theta_{m}(t)}{d t^{2}}+B \frac{d \theta_{m}(t)}{d t}+K \theta_{m}(t)
$$

$$
e_{a}(t)=K_{a} e(t)
$$

$$
e(t)=K_{s}\left[\theta_{r}(t)-\theta_{m}(t)\right]
$$

a) Assign the state variables as $x_{1}(t)=\theta_{m}(t), x_{2}(t)=d \theta_{m}(t) / d t$, and $x_{3}(t)=i_{a}(t)$.

Express the state space representation in the form of
$\frac{d x(t)}{d t}=A x(t)+B \theta_{r}(t), \quad \theta_{m}(t)=C x(t)$.
b) Develop a corresponding state diagram.
c) Find the closed-loop transfer function, $H(s)=\Theta_{m}(s) / \Theta_{r}(s)$.

Problem 2:

For the circuit diagram shown below, derive its state space representation in the form of

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+b u(t), \\
y(t) & =c x(t)+d u(t)
\end{aligned}
$$

where input $u(t)=e_{i}(t)$ and output $y(t)=e_{o}(t)$ is the voltage across the resistor R_{2}. Develop a corresponding state diagram.

Problem 3:

For the mechanical system shown below, derive its state space representation in the form of

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+b u(t) \\
& y(t)=c x(t)+d u(t)
\end{aligned}
$$

where input is a force $f(t)$ pulling mass M downward (i.e., $u(t)=f(t)$) and output $y(t)=y_{2}(t)$. Please ignore the effect of gravitational force, $M g$. Develop a corresponding state diagram.

Problem 4:

Given

$$
\dot{x}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] x+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u
$$

with $x(0)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$ and $u(t)=\left\{\begin{array}{cc}1, & t \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$. Find the solution, $x(t)$.

Problem 5:

Find the solution of $\dot{x}(t)=A x(t)+B u(t)$, where

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 2 & -1 \\
0 & 0 & 3
\end{array}\right] \text { and } B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

with

$$
x(0)=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { and } u(t)=1 \text { for all } t \geq 0 \text { (unit step function). }
$$

